Magamról

Saját fotó

Éber tudatossággal figyelem a jeleket. Írom a blogom és a naplóm évek óta és rengeteg fotót készítek.Hat unokám sok derűt hoz a mindennapokba. Hálás köszönet érte a lányaimnak és a vejeimnek is. Persze sok hála a betegeimnek és tanítványaimnak is a rendkívüli pillanatokért. 

2012. október 2., kedd

Kvantumfizika érthetően 6.


A Multiverzum-értelmezés (Many-Worlds Theory)


Az értelmezés szerint a hullámfüggvény valójában soha nem omlik teljesen össze-legalábbis ami a létező világok összességét jelenti -, viszont minden egyes megfigyelő, aki eltérő eredményt tapasztal, azonnal egy új, független téridőbe kerül, amelynek nincs többé kapcsolata a következőmegfigyelők világegyetemével.



Más szavakkal, a világegyetem "elágazik", vagy kettéválik minden olyan esetben, amikor egy megfigyelés kikényszeríti a hullámfüggvény látszólagos összeomlását. Tehát Schrödinger macskája esetében legalább két világegyetem születik; az egyikben a macska tovább él, és mindenki aki megfigyeli, élőnek látja; míg a másikban házi kedvencünk a cica-mennyországban kergeti tovább az egereket. Ettől függetlenül a hullámfüggvény sértetlen marad, de csak a multiverzum szintjén értelmezve: az egyes elágazó univerzumok annak összeomlott állapotát tapasztalják.
Ahogy azt látni fogjuk, a kísérlet értelmezésének analógiája nagyon sok esetben fontos szerepet játszik majd az interferencia-kép értelmezésében; most visszatérünk a parányi részecskék világába, és megvizsgáljuk, milyen trükkös és érdekes eredményekhez vezet, ha egy kicsit "megbolondítjuk" a korábban ismertetett, klasszikus kétrés-kísérletet.

A Kvantumradír (quantum-eraser) kísérletek



Mint azt már említettük, a kutatók kezdték egyre inkább úgy látni, hogy a "melyik-rés", vagy "melyik-útvonal" közvetlen vagy közvetett megismerésével - vagy talán még megismerés nélküli, műszeres érzékelésével is - óhatatlanul összeomlik az interferencia-kép, mindegy, mennyire jelentéktelen a mérés fizikai hatása az interferáló részecskékre nézve.

Ekkor felvetődött, hogy mit történne, ha "megjelölnénk" vagy térben elkülönítenénk a szabadon mozgó részecskéket, de mielőtt megpróbálnánk a jelölés alapján kitalálni az útvonalukat, ismét "összekevernénk"őket, és így vetülnének a képernyőre.

Más szavakkal, mi történne, ha lehetőséget teremtenénk a "melyik-rés", vagy "melyik-útvonal" megismerésére, de végül nem használnánk azt ki? Mi lenne, ha "eltörölnénk" ismereteinket, mielőtt azok birtokába juthatnánk?



Ennek egy nagyon egyszerű módja az, ha például másként polarizáljuk az egyik, illetve a másik résen áthaladó fotonokat (függőlegesen vagy vízszintesen), de mielőtt az ernyőre vetülnének, egy ellentétes, de szimmetrikus polarizációs szűrővel ismét összekeverjük őket. (A polarizációs szűrők ma már meglehetősen hétköznapiak, olyannyira, hogy a kísérletet "házilag" is el lehet végezni; a 3-dimenziós mozikban is ilyeneket használnak a két szemünk számára a képek szétválasztására).
Nos, a Kvantumradír kísérletek újabb meglepő eredményt hoztak; noha a részecskéket megjelöltük a polarizációval, vagyis "megmértük" őket, de aztán eldobtuk a mérési eredményt, mielőtt azt megismerhettük volna, így az interferencia-kép újra megjelent az ernyőn. Egy újabb, kristálytisztának tűnő érv amellett, hogy nem a mérés, hanem mi magunk- a megfigyelők - omlasztjuk össze a hullámfüggvényt, ha "kikényszerítjük" az egyértelmű eredményt.



Ekkor azonban a fizikusoknak egy ördögi ötlete támadt - mi lenne, ha kigúnyolnánk az éppen rajtunk nevető világegyetemet, és saját maga ellen fordítanánk ezt a tényt? Mi lenne, ha a megfigyelést akkor végeznénk el, amikor a részecskék már nem tudnak ellene semmit sem tenni? Ez vezetett az ún. "Késleltetett választásos kvantumradír-kísérletekhez" - amelyek - mint az sejthető - nem várt és elképesztő eredménnyel zárultak.
A tanulság, hogy a világegyetemet nem lehet csak úgy "kigúnyolni", úgy tűnik, bármennyit is csavarunk és trükközünk, mindig előáll valamivel, amire senki nem számított.

A késleltetett választásos kvantumradír-kísérlet
 
 


A trükk, amivel a tudósok próbálkoztak, valóban elismerésre méltó, és hatástalanságában is rendkívüli. Nagyon leegyszerűsítve, az alapelképzelés a következő volt.
Állítsuk össze a klasszikus kétrés-kísérletet, de az interferencia-ernyő legyen tetszés szerint elmozdítható, vagyis "kivehető" a fény, a fotonok, vagy a különálló elektronok útjából. A kivehető képernyő mögé pedig helyezzünk két optikai érzékelőt (mikroszkópot, távcsövet, stb), amely közül az egyik például csak a jobb oldali, a másik csak a bal oldali résre fókuszál.
Tegyük a helyére az interferencia-ernyőt, és lőjük ki egyesével a fotonokat vagy elektronokat, majd várjuk meg, amíg áthaladnak valamelyik (vagy mindkét) résen, és várjunk egészen addig, amíg majdnem elérik az interferencia-ernyőt.
Ekkorra már réges-régen elvileg el kellett, hogy dőljön, hogy a részecske melyik résen haladt át, vagy esetleg mindkettőn egyszerre (hiszen fénysebességgel vagy közel fénysebességgel halad, és a következő pillanatban becsapódik, ill. becsapódna az ernyőbe), mi viszont még mindig dönthetünk, hogy hagyjuk-e ezt megtörténni. Ha a helyén hagyjuk az ernyőt, akkor szépen hullámzó interferencia-képet kapunk. Ha viszont hirtelen kiemeljük az ernyőt - a másodperc milliárdod része alatt - akkor a résekre fókuszáló optikai érzékelők valamelyike látni fogja a fotont, és tudhatjuk, hogy melyik résen haladt át igazából.
Tudjuk, hogy ahhoz, hogy az ernyőn inteferencia-képet kapjunk, a fotonnak vagy elektronnak egyszerre kell áthaladnia mindkét résen; térben, időben vagy ezek valamilyen kombnációjában. Viszont a kísérleti eremények szerint, ha kivesszük az ernyőt, SOHA nem látjuk őket egyszerre mindkét résen áthaladni. Mindig az egyik VAGY a másik "távcső" látja a felvillanást, de a kettő együtt sohasem.
Itt egy látszólagos paradaxonnal kerülünk szembe; hiszen mi az interferencia-ernyőt csak a leges-legutolsó pillanatban, akkor emeltük ki a rendszerből, amikor az már nem hathatott volna arra, hogy a részecskék melyik utat (vagy utakat) választották.
Ez látszólag olyan, mintha a mi későbbi döntésünk visszamenőleg megváltoztatta volna a múltat; vagyis ha a helyén hagyjuk az inteferencia-ernyőt, akkor interferencia-képet kapunk (mindig), pedig az csak a hullámfüggvény szabadsága esetén lehetséges; ha viszont az utolsó pillanatban kivesszük, mindig csakis az egyik résen látjuk beérkezni a részecskét. Márpedig ha mindig csak az egyik résen haladna át, nem okozhatna interferencia-képet. A döntést a kiemelésről viszont minden egyes esetben csak jóval azután hoztuk meg az ernyőkiemeléséről, miután már régen áthaladtak a résen, vagy réseken...

 
 
Vagy, ha nem a jelen változtatta meg a múltat, akkor honnan tudhatták volna "előre" a fotonok, vagy elektronok, hogy mi milyen döntést fogunk hozni? Honnan tudhatták volna, hogy átrepülhetnek-e mindkét résen, vagy csak az egyiken? Honnan tudhatták volna, hogy mi kikényszerítjük-e majd a döntést az egyértelmű útvonalukról, vagy hagyni fogjuk őket szabadon interferálni?
Hogy még jobban megértsük mindezt, képzeljük el ugyanezt a kísérletet nagyban. Nagyon nagyban, hogy pontosak legyünk.

Intergalaktikus késleltetett-választásos kvantumradír



Képzeljük el, hogy egy több milliárd fényévnyire lévő naprendszer bolygójáról néhány foton valamikor (több milliárd éve) kisugárzódott a Föld irányába. Csakhogy a távoli csillag és a Föld között egy órási, hatalmas tömegű galaxis lustálkodik.
Az ilyen hatalmas tömegű galaxisokról köztudott, hogy általában szupermasszív fekete lyukak találhatóak a középpontjukban, és erősen meggörbítik a teret (erről a jelenségről fotóink is vannak, tehát nagyon is létező); elhajlítják a mellettük elhaladó fény útját, és végső soron gigantikus méretű, gravitációs "lencseként" viselkednek. Így aztán lehetőségünk van olyan, jóval távolabbi csillagokat, bolygókat vagy égitesteket is megpillantani, amik egyébként takarásban lennének.

Felismerhetjük, hogy ez az elrendezés tulajdonképpen egy óriási tér- és időbeli méretűkétrés-kísérlet, amelyben a távoli csillagról vagy bolygóról útnak indult foton elhaladhat a galaxis egyik oldalán, vagy a másikon -esetleg mindkettőn egyszerre.
Ha a Földön egy fényérzékeny lemezt fordítunk a beérkező fotonok felé anélkül, hogy a galaxis egyik vagy másik oldalára fókuszálnánk a lencsékkel, az apró fény-részecskék interferencia-képet fognak kialakítani. Ha viszont két távcsővel ráfókuszálunk a galaxis két szélére, akkor mindig csak az egyik távcsőben fogjuk látni a fotonokat felvillanni, külön-külön. De sohasem egyszerre.
Ne felejtsük el, hogy a fény, vagyis a fotonok erről a távoli, nagyon távoli bolygóról vagy csillagról már több milliárd éve úton vannak, és a gravitációs lencseként viselkedő galaxis mellett is hasonlóan hosszú ideje elhaladtak.
 
 

Mi viszont most, a jelenben dönthetünk arról, hogy tudni akarjuk-e, melyik utat választották, vagy meghagyjuk a szabadságukat, amely szerint egyszerre mindkét oldalon is jöhettek. Csakhogy ez, mint objektív tény, már milliárd évekkel ezelőtt el kellet, hogy dőljön.
A következtetés elkerülhetetlen - döntésünkkel ezen több milliárd év történetét írhatjuk újra, vagy változtathatjuk meg, esetleg alakíthatjuk ki, értelmezés szerint. Hiszen, ha távcsöveinkkel ráfókuszálunk a galaxis két szélére, akkor mindig csakis az egyik oldalon fogjuk látni a fotonok felvillanását, vagyis több milliárd éve is azok csakis azon az egy jól meghatározott úton "repülhettek" át felénk a térben. Ha viszont hagyjuk őket az interferencia-ernyőre esni, akkor interferncia-képet alakítanak ki, ami csak úgy lehetséges - ismét- ha egyszerre mindkét úton jöhettek.
Valóban képesek lennénk erre? Megváltoztatjuk, vagy csak kialakítjuk az eddig határozatlan múltat?